Introduction Geophysics Lab

Derivation of Spherical Snell's Law for radial symmetric velocity model v(r)

- 1. Assume a spherical earth where velocity is only a function of radius v(r). Assume a ray that is incident at the top of the first spherical layer with an angle of incidence (Θ_1) . Use the angles and layer velocities defined in the chalkboard figure. You should rewrite your derivation two or more times to get a clean, erudite, logical, and 'pretty' derivation.
 - a) Do a derivation of $f(\Theta_1) = \Theta_2$
 - b) Do a derivation of $f(\Theta_1) = \Theta_3$
- 2. Assume a spherical earth with four velocity layers (v_1 =2, v_2 =3, v_3 =4, v_4 =5 km/s) where the interfaces are at r_1 =400, r_2 =300, r_3 =200 km. Use the angles and values as defined for the chalkboard figure. Assume the angle of incidence at the top of the first layer is Θ_1 = 10°.

Algebraically (no numbers) derive the equation

- a) $\Theta_2(\Theta_1)$
- b) $\Theta_3(\Theta_2)$
- c) Θ_4 (Θ_3)

Now, substitute in the appropriate values for the variables into the three equations above (a-c) and find the angles. The correct answer is that $\Theta_4 = 60.1^{\circ}$.

- d) Calculate value of equation (a).
- e) Calculate value of equation (b).
- f) Calculate value of equation (c).