Introduction Geophysics Lab ## Derivation of Spherical Snell's Law for radial symmetric velocity model v(r) - 1. Assume a spherical earth where velocity is only a function of radius v(r). Assume a ray that is incident at the top of the first spherical layer with an angle of incidence (Θ_1) . Use the angles and layer velocities defined in the chalkboard figure. You should rewrite your derivation two or more times to get a clean, erudite, logical, and 'pretty' derivation. - a) Do a derivation of $f(\Theta_1) = \Theta_2$ - b) Do a derivation of $f(\Theta_1) = \Theta_3$ - 2. Assume a spherical earth with four velocity layers (v_1 =2, v_2 =3, v_3 =4, v_4 =5 km/s) where the interfaces are at r_1 =400, r_2 =300, r_3 =200 km. Use the angles and values as defined for the chalkboard figure. Assume the angle of incidence at the top of the first layer is Θ_1 = 10°. Algebraically (no numbers) derive the equation - a) $\Theta_2(\Theta_1)$ - b) $\Theta_3(\Theta_2)$ - c) Θ_4 (Θ_3) Now, substitute in the appropriate values for the variables into the three equations above (a-c) and find the angles. The correct answer is that $\Theta_4 = 60.1^{\circ}$. - d) Calculate value of equation (a). - e) Calculate value of equation (b). - f) Calculate value of equation (c).